
Debugging and
Observing Your

Scala Code

Will Sargent
@will_sargent

https://tersesystems.com

https://tersesystems.com/

Context
You're running services in the cloud.

Suddenly a wild exception occurs!

What do you do?

akka.pattern.AskTimeoutException: Ask timed out on

[Actor[akka://ask-pattern-timeout-warning/user/dumb-actor#7781
after [2000 ms]

Observability Will Detect!
• But the overall health of the system is fine...
• ...so it won't care.

Observe the Unobservable
• Observability has a hard time with non-events
• Show number of emails being sent!
• But an email that doesn't get sent?
• Data never written to database?

Needle In A Haystack
•
• Distributed Tracing only covers so much
• Internal State is the Hidden Menace
• Input + ??? = Output
• Especially bad with state over multiple operations

The Art of Finding a Needle in a Haystack

https://cacm.acm.org/magazines/2018/11/232215-modern-debugging/fulltext

Developers Want Logging

printf debugging may not be the most fun at a party
but they're always there when you need them.

@mvsamuel

There is no software issue so profound, complex, or
inexplicable that it cannot be resolved via a surfeit of

print statements.

@ericasadun

https://twitter.com/mvsamuel/status/1392513713656238089
https://twitter.com/ericasadun/status/1014634444022472704

Developers Really Want Logging

The best invention in debugging was still printf
debugging.

On the Dichotomy of Debugging Behavior Among
Programmers

SWEs are more likely to consult logs earlier in their
debugging workflow, where they look for errors that

could indicate where a failure occurred.

Debugging Incidents in Google's Distributed Systems

https://www.spinellis.gr/pubs/conf/2018-ICSE-debugging-analysis/html/BSSZ18.pdf
https://research.google/pubs/pub49291/

Perception
•
• Debug Logging is Super Expensive!

Logging is Expensive

https://sirupsen.com/napkin/problem-2/

Reality
• Logging is Cheap!
• Observation is Expensive!

Logging is Cheap
• CPU overhead? .
• Disk storage? You're not keeping this long term.
• Blocking threads? Use .
• IO Bandwidth? Memory-mapping: .
• Still worried about writing to disk? Use tmpfs.
• Allocation Pressure? Not in the .

Trivial

async appender
803 inserts per ms

newer JVMs

https://tersesystems.com/blog/2019/06/03/application-logging-in-java-part-6/
https://github.com/logstash/logstash-logback-encoder/tree/logstash-logback-encoder-6.0#async-appenders
https://tersesystems.com/blog/2020/11/26/queryable-logging-with-blacklite/
https://tersesystems.com/blog/2020/08/23/benchmarking-logging-with-jdk-14/

Observation Is Expensive

The Observability Pipeline

https://blog.realkinetic.com/the-observability-pipeline-3010484eb931

Observation On Demand
• Write Structured Logging in JSON
• Write to mem-mapped SQLite using
• Turn on to replicate to S3 (as needed)
• Pull from S3 and attach using .
• .

Blacklite
litestream

Jupyter Lab
Do Science To It

https://github.com/tersesystems/blacklite/
https://litestream.io/
https://jupyterlab.readthedocs.io/en/stable/
https://tersesystems.com/blog/2019/09/28/applying-data-science-to-logs-for-developer-observability/

Instrumentation
• 3rd party library that doesn't have logging?
• No problem.
• We can inject logging with .instrumentation

https://tersesystems.com/blog/2019/06/11/application-logging-in-java-part-8/

Backtracing
• Application can query SQLite DB using JSON API
• On exception, query by correlation id...
• And attach logs as breadcrumbs to error reporting.

Terse-Logback
•
•
•
•

Instrumentation
Relative Nanos
Unique ID
Correlation ID

https://tersesystems.github.io/terse-logback/guide/instrumentation/
https://tersesystems.github.io/terse-logback/guide/relativens/
https://tersesystems.github.io/terse-logback/guide/uniqueid/
https://tersesystems.github.io/terse-logback/guide/correlationid/

Demo Time!
https://terse-logback-showcase.herokuapp.com

https://terse-logback-showcase.herokuapp.com/

SLF4J Predates Structured Logging
• 1999 log4j
• 2005 SLF4J
• 2006 Logback
• 2006
• 2011
• 2012 Log4J 2
• 2013 logstash-logback-encoder

Logging in JSON
Logs for Machines in JSON

http://www.asynchronous.org/blog/archives/2006/01/25/logging-in-json
https://paul.querna.org/articles/2011/12/26/log-for-machines-in-json/

How Can We Make This Easier?
 // creation is verbose

val marker = LogstashMarkers.append("correlationId", cid)

// thread local map of String, async problem

MDC.set("correlationId", cid)

// explicit conditional with marker

if (logger.isLoggingDebug(marker)) {

 // explicit marker, person calls toString implicitly

 logger.debug(marker, "Hi there {}", person)

}

// Eats exception because it's an argument

logger.error("Oh noes {}", ex)

Blindsight
• DSL and Type Classes For Structured Logging
• Contextual Logging
• Conditional Logging
• Flow Based Logging and Tracing
• Script Conditions
• "printf debugging" intention macros

Demo Time
Turning Code from SLF4J to Blindsight!

https://github.com/tersesystems/blindsight-starter

https://github.com/tersesystems/blindsight-starter

DSL and Type Classes
case class Person(name: String, age: Int)

implicit val personToArgument = ToArgument[Person] { person =>
 import DSL._

 Argument(

 ("name" -> person.name)

 ~ ("age_year" -> person.age)

)

}

logger.info("person is {}", Person("steve", 12))

Building up Context
import com.tersesystems.blindsight._

import DSL._

val correlationId: String = "123"

val clogger = logger.withMarker(

 bobj("correlationId" -> correlationId)

)

clogger.info("Logs to JSON w/ a correlationId field")

Conditional Logging
def condition: Boolean =

 java.lang.Boolean.getBoolean("debug.enabled")

logger

 .withCondition(condition)

 .debug("Only logs when condition is true")

logger.debug.when(condition) { log => log("when true") }

Conditions are Powerful!

What’s really for us is to be able to real-time turn on
and off of what log stuff you’re collecting at a pretty

granular level.

The Bones of The System:

A Case Study of Logging and Telemetry at Microsoft

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ICSE-logging-submisson.pdf

Conditions
• By
• By
• By
• By
• By

Feature Flag
Tracer Bullet
Circuit Breaker
Time
Script

https://tersesystems.github.io/blindsight/usage/conditional.html#conditional-on-feature-flag
https://tersesystems.github.io/blindsight/usage/conditional.html#conditional-with-tracer-bullet
https://tersesystems.github.io/blindsight/usage/conditional.html#conditional-on-circuit-breaker
https://tersesystems.github.io/blindsight/usage/conditional.html#conditional-on-time
https://tersesystems.github.io/blindsight/usage/scripting.html

Source Aware Scripts
package exampleapp

class MyClass {

 val sm = new ScriptManager(scriptHandle)

 val logger = LoggerFactory.getLogger

 val location = new ScriptBasedLocation(sm, default = false)

 def logDebugSpecial(): Unit = {

 // location.here invokes implicit sourcecode macros

 logger.debug.when(location.here) { log =>

 log("This will log because of method name!")

 }

 }

}

Tweakflow script
library blindsight {

 function evaluate: (long level, string enc,

 long line, string file) ->

 if (enc == "exampleapp.MyClass.logDebugSpecial") then

 true

 else

 (level >= 20); # info_int = 20

}

Flow Based Logging

Useful for tracing entry / exit methods

implicit def flowB[B: ToArgument]: FlowBehavior[B] = ...

def flowMethod(arg1: Int, arg2: Int) = flowLogger.trace {

 arg1 + arg2

}

Flow with Duration
class DurationFlowBehavior[B: ToArgument]

 (implicit spanInfo: SpanInfo) extends FlowBehavior[B] {

 override def exitStatement(resultValue: B,

 source: Source) =

 Some {

 val span = popCurrentSpan

 Statement()

 .withMarkers(Markers(markerFactory(span)))

 .withMessage(s"${source.enclosing.value} exit,"

 + s"duration ${span.duration()}")

 .withArguments(Arguments(resultValue))

 }

}

Inspecting Code
What do people actually do in printf debugging?

Finding 5: Event logging serves three major purposes
in the reference domain, i.e., state dump,
execution

tracing and event reporting.

Industry Practices and Event Logging: Assessment of a
Critical Software Development Process

https://www.semanticscholar.org/paper/Industry-Practices-and-Event-Logging%3A-Assessment-of-Pecchia-Cinque/90748f3ec71509fbf89411923c3cb0ea89ff93c9

Inspecting Vals
val fn = { dval: ValDefInspection =>

 logger.debug(s"${dval.name} = ${dval.value}")

}

decorateVals(fn) {

 val a = 5

 val b = 15

 a + b
}

Inspecting Ifs
decorateIfs(dif => l.debug(s"${dif.code} = ${dif.result}")) {

 if (System.currentTimeMillis() % 17 == 0) {

 println("branch 1")

 } else if (System.getProperty("derp") == null) {

 println("branch 2")

 } else {

 println("else branch")

 }

}

Inspecting Fields
class ExampleClass(val someInt: Int) {

 protected val protectedInt = 22

}

val exObj = new ExampleClass(42)

val publicFields = dumpPublicFields(exObj)

logger.debug(s"exObj public fields = $publicFields")

Where Do You Start?

When to Log
• For libraries, at least INFO or WARN.
• Libraries can be instrumented, but may lack context.
• Change Logback levels with ChangeLogLevel .
• Use conditional logging for your application.
• Log application code at TRACE to disable filtering.
• Ideally, use conditions you can change at runtime.

Special Condition
• If you want to run expensive queries...
• If you want to dump lots of info...
• If you want to sample at TRACE...
• If you want to suppress useless errors...

...use a special condition.

What To Log?

Desire Paths

by kake pugh

https://www.flickr.com/photos/kake_pugh/1307255998/sizes/z/in/photostream/

Logging as a desire path

When you (think) you're done with a logging
statement, resist the temptation to delete it or put it in
a comment. If you delete, you lose the work you put to

create it. If you comment it out, it will no longer be
maintained, and as the code changes it will decay and
become useless. Instead, place the logging statement

in a conditional. (p111)

Effective Debugging

https://www.spinellis.gr/debugging/

Logging as Guide

Logs should contain sufficient information to help with
the reconstruction of critical state transitions.

Neal Hu, Logging Like a Pro

Log as if your program was writing a journal of its
execution: major branching points,
processes starting,

etc., errors and other unusual events.

Logging Wisdom: How To Log

https://itnext.io/logging-like-a-pro-8cc6ad09e415
https://medium.com/unomaly/logging-wisdom-how-to-log-5a19145e35ec

Diagnostic Logging
•
• Domain level concepts and flow.
• Use diagnostic logging in place of comments.
• "If there were a bug, where would it be?"
• Explicitly pass context through async boundaries.

Debug Logging With An Audience

https://tersesystems.com/blog/2019/10/05/diagnostic-logging-citations-and-sources/

Your Voice In The Machine
• Diagnostic logging is better than comments.
• Intuition, guidance, live walkthrough of code.
• What objects and what states are significant?
• What does this mean?

Good Books
•
•

Why Programs Fail
Effective Debugging

https://read.amazon.com/kp/embed?asin=B0092L8LCW&preview=newtab&linkCode=kpe&ref_=cm_sw_r_kb_dp_FMDWBZFSCG1VKN6EVXZQ
https://smile.amazon.com/dp/0134394798/ref=cm_sw_r_tw_dp_E350B5JGFQ33CCXKZR1D?_encoding=UTF8&psc=1

Useful Services
•
•
•

Honeycomb
Rookout
Lightrun

https://www.honeycomb.io/
https://www.rookout.com/
https://lightrun.com/

Questions?

